Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination.
نویسندگان
چکیده
To design therapies for demyelinating diseases such as multiple sclerosis, it will be important to understand the mechanisms that control oligodendrocyte progenitor cell (OPC) numbers in the adult central nervous system (CNS). During development, OPC numbers are limited by the supply of platelet-derived growth factor-A (PDGF-A). Here, we examine the role of PDGF-A in regulating OPC numbers in normal and demyelinated adult CNS using transgenic mice that overexpress PDGF-A in astrocytes under the control of the glial fibrillary acidic protein (GFAP) gene promoter (GFAP-PDGF-A mice). In adult GFAP-PDGF-A mice, there was a marked increase in OPC density, particularly in white matter tracts, indicating that the PDGF-A supply controls OPC numbers in the adult CNS as well as during development. To discover whether increasing PDGF expression increases the number of OPCs following demyelination and whether this enhances the efficiency of remyelination, we induced demyelination in GFAP-PDGF-A transgenic mice by intraspinal injection of lysolecithin or dietary administration of cuprizone. In both demyelinating models, OPC density within lesions was significantly increased compared to wild-type mice. However, morphological analysis of lysolecithin lesions did not reveal any difference in the time course or extent of remyelination between GFAP-PDGF-A and wild-type mice. We conclude that the availability of OPCs is not rate limiting for remyelination of focal demyelinated lesions in the mouse. Nevertheless, our experiments show that it is possible to increase OPC population density in demyelinated areas by artificially increasing the supply of PDGF.
منابع مشابه
Fibroblast growth factor 1 (FGFR1) modulation regulates repair capacity of oligodendrocyte progenitor cells following chronic demyelination.
The adult mammalian brain contains multiple populations of endogenous progenitor cell types. However, following CNS trauma or disease, the regenerative capacity of progenitor populations is typically insufficient and may actually be limited by non-permissive or inhibitory signals in the damaged parenchyma. Remyelination is the most effective and simplest regenerative process in the adult CNS ye...
متن کاملAbsence of fibroblast growth factor 2 promotes oligodendroglial repopulation of demyelinated white matter.
This study takes advantage of fibroblast growth factor 2 (FGF2) knock-out mice to determine the contribution of FGF2 to the regeneration of oligodendrocytes in the adult CNS. The role of FGF2 during spontaneous remyelination was examined using two complementary mouse models of experimental demyelination. The murine hepatitis virus strain A59 (MHV-A59) model produces focal areas of spinal cord d...
متن کاملImpaired remyelination and depletion of oligodendrocyte progenitors does not occur following repeated episodes of focal demyelination in the rat central nervous system.
It has been hypothesized that the progressive failure of remyelination in chronic multiple sclerosis is, in part, the consequence of repeated episodes of demyelination at the same site, eventually depleting oligodendrocyte progenitor cells (OPCs) and exhausting the remyelinating capacity. We investigated the effect of previous focal, ethidium bromide-induced demyelination of brain stem white ma...
متن کاملPre-oligodendrocytes from adult human CNS.
CNS remyelination and functional recovery often occur after experimental demyelination in adult rodents. This has been attributed to the ability of mature oligodendrocytes and/or their precursor cells to divide and regenerate in response to signals in demyelinating lesions. To determine whether oligodendrocyte precursor cells exist in the adult human CNS, we have cultured white matter from pati...
متن کاملThe Influence of Platelet-derived Growth Factor and Fibroblast Growth Factor 2 on Oligodendrocyte Development and Remyelination
Title: THE INFLUENCE OF PLATELET-DERIVED GROWTH FACTOR AND FIBROBLAST GROWTH FACTOR 2 ON OLIGODENDROCYTE DEVELOPMENT AND REMYELINATION Author: Joshua C. Murtie Ph.D. (2004) Thesis Directed By: Regina C. Armstrong Ph.D. Professor, Department of Anatomy Physiology, and Genetics ABSTRACT: Multiple sclerosis (MS) is a demyelinating disease of the central nervous Multiple sclerosis (MS) is a demyeli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular neurosciences
دوره 25 2 شماره
صفحات -
تاریخ انتشار 2004